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Previous neuroimaging studies have shown that neural activity changes

with task practice. The types of changes reported have been

inconsistent, however, and the neural mechanisms involved remain

unclear. In this study, we investigated the influence of practice on

different component processes of working memory (WM) using a face

WM task. Event-related functional magnetic resonance imaging

(fMRI) methodology allowed us to examine signal changes from early

to late in the scanning session within different task stages (i.e.,

encoding, delay, retrieval), as well as to determine the influence of

different levels of WM load on neural activity. We found practice-

related decreases in fMRI signal and effects of memory load occurring

primarily during encoding. This suggests that practice improves

encoding efficiency, especially at higher memory loads. The decreases

in fMRI signal we observed were not accompanied by improved

behavioral performance; in fact, error rate increased for high WM

load trials, indicating that practice-related changes in activation may

occur during a scanning session without behavioral evidence of

learning. Our results suggest that practice influences particular

component processes of WM differently, and that the efficiency of

these processes may not be captured by performance measures alone.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

The influence of practice on the efficient performance of a task

is a fundamental aspect of human behavior. However, the cognitive

and neural mechanisms mediating learning and practice are not

well understood. Behavioral research suggests that performance of

a novel task may initially require a great deal of executive control
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(Anderson, 1982; Shiffrin and Schneider, 1984). With practice,

however, better learning strategies may be implemented, and the

processing required for successful task performance may become

more efficient and automatic or proceduralized. In a variety of

cognitive and motor tasks, this transition often results in improved

task performance, which may be reflected by decreased reaction

time and increased accuracy (Poldrack, 2000).

Research on the neural mechanisms underlying this shift from

inexperienced to skilled task performance has produced inconsis-

tent results. Some of the inconsistency may result from the variety

of tasks studied. Research on the neural effects of practice has

included tasks ranging from motor learning (Karni et al., 1995;

Petersen et al., 1998; Tracy et al., 2001) and passive visual

perception (Gauthier et al., 1999; Rainer and Miller, 2000; van

Turennout et al., 2000) to higher-level ones like categorical and

probabilistic learning (Poldrack et al., 1999; Seger et al., 2000),

mirror reading (Kassubek et al., 2001; Poldrack et al., 1998),

artificial grammar learning (Fletcher et al., 1999), and verb

generation (Petersen et al., 1998; Raichle et al., 1994). Inconsis-

tency in the data may also be due to differences in the time course

of practice-related changes investigated (i.e., short-term within-

session learning vs. long-term task learning).

Reflecting these inconsistencies, wide variability has been

reported both in the brain regions exhibiting practice-related

activation changes and in the patterns of activation in those

regions. This variability can be characterized in two ways. First,

the brain regions engaged by a task remain constant but the

magnitude of the activation within these regions either increases

(Gauthier et al., 1999; Iacoboni et al., 1996; Karni et al., 1995) or

decreases with practice of the task (Garavan et al., 2000; Jansma et

al., 2001). This type of dynamic change in task-related brain

activity may reflect greater neural efficiency, more precise func-

tional circuitry (Garavan et al., 2000), or an expanded cortical

representation of the task-relevant information (Karni et al., 1995).

Because both increases and decreases in activation with the

development of task expertise have been reported, it is unclear

how to interpret these changes with respect to neural efficiency.

Some researchers suggest that information-processing efficien-

cy is associated with brain activation decreases. For example,
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Jansma et al. (2001) conducted an fMRI study of practice on a

verbal delayed recognition task, in which participants were given a

set of letters to remember throughout a delay, and were asked to

respond to a probe item based on whether or not it was in the initial

set. They found that practice on this task resulted in activation

decreases in working memory (WM)-related areas (e.g., bilateral

dorsal prefrontal cortex (PFC), precuneus, and right frontopolar

area), presumably due to more efficient WM processing as task

performance became automated. Similarly, Milham et al. (2003)

found decreases in anterior cingulate and dorsolateral PFC with

practice on a variant of the Stroop task. Finally, decreases in neural

activity with learning have been reported in primate electrophys-

iology experiments as well, supporting the hypothesis that neurons

become increasingly efficient with stimulus familiarity and task

exposure (Asaad et al., 1998).

In other studies, however, practice has produced increased

activity with both short- and long-term training. For example,

Karni et al. (1995) found an expanded area of primary motor cortex

active after several weeks of practice on a motor task. Olesen et al.

(2004) found increased prefrontal and parietal activity after 5

weeks of training on a visuospatial working memory task. Simi-

larly, Iacoboni et al. (1996) reported increased activity in supple-

mentary motor area and PFC with short-term practice on a motor

association task. Increases in prefrontal, premotor, and basal

ganglia regions have also been associated with motor sequence

learning (Grafton et al., 1995), apparently reflecting plasticity

within existing connections as the sequence becomes well learned.

These studies suggest that improved neural efficiency and task

performance may produce activation increases. Taken together

with studies reporting activation decreases with learning, it is clear

that there is no simple relationship between practice and neuro-

physiological processes. Both increases and decreases in activity

have been reported with task learning, suggesting that neural

efficiency cannot be defined in terms of a monotonic change.

Other factors such as the time course of learning and behavioral

changes in performance following practice further complicate the

interpretation of how brain activation patterns reflect increases in

neural efficiency. For example, in motor sequence learning, Karni

et al. (1995) found short-term decreases in activation in primary

motor cortex followed by a long-term increase in the extent of

activation in the same region after 4 weeks of practice. Hund-

Georgiadis and von Cramon (1999) found that experienced pianists

showed increases in primary motor cortex activation with practice,

while non-pianists showed decreases (Hund-Georgiadis and von

Cramon, 1999). Because both groups got faster with practice, it is

unlikely that these effects are due to simple performance differ-

ences. A number of studies have addressed questions about the

time course of learning by examining early and late phases of

learning (e.g., Tracy et al., 2001). These studies suggest that the

time course of learning may be an important methodological

consideration for examining neural activation associated with a

task. Adding additional complexity to the issue, faster performance

with practice may be confounded with neural efficiency because

changes in neural activity may be due to changes in time spent on

task rather than to more efficient processing (Poldrack, 2000).

A second source of variability in the effect of practice on brain

activation may arise from a functional reorganization of task-

related brain regions. In contrast to the studies discussed above,

several studies have found evidence for functional reorganization

of brain activity with increased practice on a task (Petersen et al.,

1998, 1999; Poldrack et al., 1998; Raichle et al., 1994; Sakai et al.,
1998; Shadmehr and Holcomb, 1997; Staines et al., 2002). These

studies suggest that a shift in the location of active brain regions

reflects a shift in the underlying processes required as task

performance becomes skilled. A functional reorganization of

activity with task practice may also reflect learning-related changes

in connectivity between regions over time (Buchel et al., 1999;

Fletcher et al., 1999). Or, comparable to the short- and long-term

effects mentioned above, some studies have suggested that reor-

ganization results from a transition from short-term item-specific

learning to long-term task learning (Fletcher et al., 1999; Poldrack

and Gabrieli, 2001; Poldrack et al., 1998).

While learning is typically reflected in behavioral performance

by greater accuracy or decreased reaction time with practice, some

evidence exists showing discordance between behavioral and

neural activation data. For example, on motor learning tasks,

changes in activation have been observed even when reaction time

does not decrease (Shadmehr and Holcomb, 1997; Staines et al.,

2002), and on a working memory task, activation increased even

when accuracy was at chance (Jaeggi et al., 2003). These findings

call into question the assumption that behavioral data are coupled

inseparably with neural activity when identifying learning-related

changes. Instead, the wide variability in practice-related behavioral

changes and activation patterns suggests that there is a complex

relationship between the neural effects of practice and the cognitive

processes engaged by a particular task.

To investigate the differential effect of practice on component

WM processes, the current experiment examined how encoding,

maintenance, and retrieval processes changed with practice on a

visual WM task. We examined previously published data from an

event-related face WM task with varying levels of memory load

(Druzgal and D’Esposito, 2003). In that experiment, Druzgal and

D’Esposito compared the influence of working memory load on

activity on the temporal pattern and magnitude of activity in the

fusiform face area (FFA) and prefrontal cortex (PFC). During

encoding and delay periods, activation increased parametrically

with memory load in both of these regions, but not in the

fusiform object area (FOA). These findings suggest that both

regions are sensitive to increasing demand for working memory

processes.

Here, we investigate whether practice influences working

memory processes differentially during repetitive performance of

this face recognition task. The use of an event-related fMRI design

facilitates the ability to isolate brain activation during separate

cognitive processes (Postle et al., 2000; Zarahn et al., 1997a). It

also allows us to investigate different types of neural changes with

practice (increases, decreases, or functional reorganization of

activity) corresponding to these different processes.

We examined changes in activation from early to late in the

scanning session in regions engaged by the task to determine the

extent to which task-related regions were influenced by practice

and by memory load. We also examined mapwise activation

changes to determine whether any regions (i.e., not necessarily

task-specific regions) could be identified based on a contrast of

activity early versus late in the session and whether these regions

were also influenced by memory load.

In agreement with motor learning studies, we hypothesized that

practice-related changes would reflect more efficient processing

and plasticity in regions already specialized for task performance.

We hypothesized that regions identified in this manner would be

important for early stage or late stage task performance, or they

may be involved in more general learning mechanisms.



S.M. Landau et al. / NeuroImage 22 (2004) 211–221 213
The day before scanning, participants were familiarized with

the behavioral task. The initial learning period of a new task may

engage psychological processes in addition to those specific to the

task’s performance as participants may have to establish new

performance strategies, consolidate the new task’s rules, and

familiarize themselves with the task’s procedures. Initial learning

periods may also contain a disproportionate number of errors and

activation specific to error-related processes could therefore con-

found a contrast between practiced and unpracticed activation

patterns. Consequently, while these early learning processes are

of interest, they are not the focus of the present study, which

instead focused on the effects of practice once a degree of stability

on task performance had already been established.
Materials and methods

Participants

Ten right-handed participants (age range 22–27) were recruited

from the University of Pennsylvania Medical Center. All partic-

ipants gave written informed consent before participation in the

study. Participants were screened against medical, neurological, and

psychiatric illnesses, and also for use of prescription medications.

Behavioral task

Each trial was composed of (1) a 4-s encoding period, (2) an 8-s

delay period, (3) a 2-s retrieval period, and (4) a 16-s inter-trial

interval. At encoding, each participant saw four serially presented

images that were a mixture of gray-scale faces and gray-scale

scrambled faces. Each image was on screen for 1 s and participants

had to remember all of the intact faces. Sets of encoding stimuli

contained between one and four faces. The order of face and

scrambled face stimulus presentation was randomized so that

participants did not know how many faces they would have to

remember until the end of the encoding period. Faces were cropped

to an ovoid shape so that peripheral face features (such as hair, ears,

and neck) were not visible. During the delay period, participants

were instructed to fixate on a crosshair at the center of the screen. At

retrieval, a single gray-scale face appeared and participants were
Fig. 1. This diagram shows the structure of the behavioral task. A set of four stim

contained one, two, three, or four intact faces, with the remainder of the images co

intact faces in the stimulus set across an 8-s delay period. At the end of the delay pe

whether the probe face matched a face from the stimulus set. Following the motor

inter-trial interval (ITI).
required to give a motor response indicating whether that face

matched one of the faces presented at encoding. There were 12 trials

per fMRI run, and 8 runs in the session per participant, for a total of

96 trials per participant. Participants practiced the behavioral task

for 30 min on the day before the scanning session. For data analysis

purposes, the first three runs in the session (36 trials) were defined

as Early and the last three runs (36 trials) were defined as Late.

Trials with one or two faces at encoding were defined as Low Load

trials, and trials with three or four faces at encoding were defined as

High Load trials. Trials were balanced across early and late periods,

low and high load conditions, and the number of match/non-match

motor responses (Fig. 1).

MRI technique

Imaging was carried out on a 1.5T SIGNA scanner (GE

Medical Systems) equipped with a prototype fast gradient system

for echo-planar imaging. A standard radiofrequency (RF) head coil

was used with foam padding to restrict head motion comfortably.

High-resolution sagittal and axial T1-weighted images were

obtained in every participant. A gradient echo, echoplanar se-

quence (TR = 2000 ms, TE = 50 ms) was used to acquire data

sensitive to the blood oxygen level-dependent (BOLD) signal.

Resolution was 3.75 � 3.75 mm in plane, and 5 mm between

planes (21 axial slices were acquired). Twenty seconds of gradient

and RF pulses preceded data acquisition to allow steady-state

tissue magnetization. Participants viewed a back-lit projection

screen from within the magnet bore through a mirror mounted

on the head coil.

Data preparation

Off-line data processing was performed using the VoxBo

analysis package (http://www.voxbo.org). Initial data preparation

proceeded in the following steps: image reconstruction; sinc

interpolation in time (to correct for the fMRI slice acquisition

sequence); motion correction (six-parameter, rigid-body, least-

squares alignment); slice-wise motion compensation (to remove

spatially coherent signal changes via the application of a partial

correlation method to each slice in time (Aguirre et al., 1998a;

Zarahn et al., 1997b).
uli was serially presented during a 4-s encoding period. The stimulus set

mposed of scrambled faces. Participants were asked to remember all of the

riod, a probe face prompted participants to give a motor response indicating

response, participants were instructed to fixate on a crosshair during a 16-s

 http:\\www.voxbo.org 
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Derivation of the empirical hemodynamic response function (HRF)

The rationale for empirically deriving a HRF is described

elsewhere (Aguirre et al., 1998b). An HRF was derived from

primary sensorimotor cortex in each participant in the following

manner. Before performing the WM task described above, each

participant performed a task in which a central white fixation cross

changed briefly (130 ms) to a flickering checkerboard every 20 s,

cueing the participant to make a bilateral button press. Twenty such

events occurred during the 400-s scan.

Statistical analysis

Since fMRI data are temporally auto-correlated under the null-

hypothesis (Zarahn et al., 1997b), statistical analyses were con-

ducted within the framework of the modified general linear model

(GLM) for serially correlated error terms (Worsley and Friston,

1995). A time-domain representation of the expected 1/f power

structure (Zarahn et al., 1997b) and a notch filter that removed

frequencies above the Nyquist frequency and below 0.02 Hz (i.e.,

the portions of highest power in the noise spectrum) were placed in

the convolution matrix (Worsley and Friston, 1995). Due to the

event-related nature of the behavioral paradigm, the data were not

smoothed temporally. The data obtained from the HRF task were

modeled by using a Fourier basis set of four sines and four cosines.

A partial F test was used to evaluate the significance of activity in

sensorimotor cortical voxels, and an HRF estimate was extracted

from the suprathreshold voxels by averaging their time series. This

empirical estimate of the HRF was used in subsequent analyses for

each participant.

The general linear model (GLM) describes fMRI signal change

as a series of amplitude-scaled and time-shifted covariates or

regressors. Each covariate modeled a series of a brief neural events

convolved by the participant’s empirical HRF. Covariates were
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Fig. 2. Shown are mean reaction time and error rate with standard errors for the fac

load (high and low).
used to model encoding, delay, and retrieval periods for both high

and low levels of memory load (low: 1 or 2 faces, high: 3 or 4

faces) and for both early and late phases of practice in the scanning

session (early: runs 1–3, late: runs 6–8). Thus, three trial periods

with two load levels for each period and with two phases within the

scanning session gave a total of 12 covariates of interest. For each

load and phase of the session, encoding modeled t = 0–4 s of a

trial; delay t = 8–12 s; and retrieval t = 12–16 s. Additional

nuisance covariates were included to model an intercept, trial-

specific effects, and late encoding/early delay at t = 4–8 s (Fig. 1).

The nuisance late encoding/early delay covariate was included

to avoid contamination of delay-related activation by variance that

was not captured by the encoding covariate (Zarahn et al., 1997a).

Therefore, all delay-related activity reported in this analysis arises

from the delay covariate and not the nuisance late encoding/early

delay covariate.

Our inferential statistics were derived with a multiple regression

where the data for each participant were modeled by linear

combinations of the covariates of interest. For each participant,

parameter estimates were obtained corresponding to the indepen-

dent variable that modeled each task period for a particular

contrast. Specifically, we examined main effects of task and

practice for each participant within each trial period. Mapwise

and functional region of interest analyses were conducted based on

these contrasts (see below).

Mapwise group analyses

To perform mapwise group analyses, a whole-brain map of t

values associated with a contrast of interest (see below) was

generated in each participant’s native anatomical space. The t

map for each participant was normalized to the Montreal Neuro-

logical Institute (MNI) reference brain template using algorithms

from SPM96b (http://www.fil.ion.ucl.ac.uk/spm/distrib96.html) by

applying a 12- parameter affine transformation with non-linear
e recognition task, separated by time of session (early and late) and memory

 http:\\www.fil.ion.ucl.ac.uk\spm\distrib96.html 
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deformations routine. Normalized tmaps were then smoothed using

a Gaussian smoothing kernel (7.5 mm full-width at half-maximum).

For each voxel, the group of t values (one derived from each of the

participants) was tested for a significant difference from zero. The

upper threshold (corrected) for significance [t(9) > 6.43] was

adjusted for multiple comparisons given the smoothness of the

map to correct to a mapwise P < 0.05, two-tailed. The lower

threshold (uncorrected) for significance [t(9) > 4.30] was set to

give a voxelwise P < 0.0005, two-tailed. A minimum cluster size of

five contiguous voxels was used. The result was a whole-brain map

of voxels that showed the contrasts of interest across participants.

T tests were run on the random effects t maps rather than on the

parameter estimate maps because t maps are scaled by the noise for

each voxel, while parameter estimates are not. Scaling by the

individual noise within each voxel can increases the power of the

random effects analysis (Postle et al., 2000).

Two contrasts for the mapwise group analyses were conducted

at the encoding, delay, and retrieval periods: (1) main effect of task

and (2) main effect of practice. To approximately identify the

Brodmann’s areas (BA) identified in these analyses, we converted

the MNI coordinates to Talairach coordinates. As noted recently by

Brett et al. (2002), the MNI reference brain is not exactly the same

size or shape as the brain shown in the Talairach and Tournoux

(1988) atlas. Software for converting these coordinates to Talairach

coordinates is available online (http://www.mrc-cbu.cam.ac.uk/

Imaging/Common/mnispace.shtml). However, we should note that

the algorithm provided does not always produce coordinates that

correspond to those obtained via visual inspection using the

Talairach and Tournoux atlas.
Fig. 3. Axial slices with group-averaged (N = 10) activation for (A) regions showi

late). Shown are local maxima that exceeded a threshold of P < 0.05, corrected (sho
Functionally defined regions-of-interest (ROI) analyses

Functionally defined ROI analyses were conducted as follows:

regions showing a main effect of task and of practice from the

mapwise analyses were separately further analyzed using a within

subjects repeated measures ANOVA, conducted at a = 0.05, with

factors Practice (early, late) and Load (high, low). To carry out this

analysis, local maxima within the regions showing a main effect of

task at the corrected threshold were identified. For each local

maximum, voxels that were contiguous with the local maximum

and that also reached the uncorrected threshold for significance

(P < 0.0005) were considered a functionally defined ROI. From

each functionally defined ROI and for each participant, we

examined practice and load effects by obtaining mean parameter

estimates of all voxels in the region. This yielded four mean

parameter estimate values for each participant in each ROI (low

load early, low load late, high load early, high load late). We used

these parameter estimates in the corresponding ANOVA.
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Results

Behavioral data

Fig. 2 plots the mean reaction times (RTs) and error rates for the

four conditions of interest (i.e., high and low memory load and

early and late in practice). The data for one participant were lost

due to technical difficulties. Memory load had a significant effect

on mean RTs, [F(1,8) = 24.49, P < 0.01] and mean error rates

[F(1,8) = 46.39, P < 0.001]. Amount of practice had no significant
ng a main effect of task, and (B) regions showing a practice effect (early vs.

wn in yellow), and contiguous voxels P < 0.001, uncorrected (shown in red).

 http:\\www.mrc-cbu.cam.ac.uk\Imaging\Common\mnispace.shtml 


Table 1

Local maxima of the statistical parametric maps for the main effect of task

and effect of practice for all three task periods

Brain region x y z BA Size t Value

(voxels)

Main effect of task

Encoding: main effect only

L middle temporal gyrus 38 � 56 20 39 29 7.8

L postcentral gyrus 45 � 23 45 3 21 6.8

L insula 34 8 � 10 38 7.2

Encoding: main effect and practice effect

L fusiform gyrus 49 � 71 � 15 19 161 10.5

R precentral gyrus � 38 � 4 35 6 40 9.4

R putamen � 19 19 � 5 79 6.9

Encoding: practice by load interaction

R middle occipital gyrus � 38 � 83 10 19 49 8.9

R fusiform gyrus � 38 � 64 � 15 19 169 12.4

R inferior frontal gyrus � 45 26 20 45 40 6.8

Delay: main effect only

L inferior frontal gyrus 45 24 � 5 47 13 5.4

R inferior frontal gyrus � 30 24 1 47 6 5.7

Delay: practice by load interaction

L supplementary motor area 19 0 50 6 17 6.5

Retrieval: main effect only

L insula 53 15 � 5 93 12.4

L insula 49 11 � 5 71 9.2

R inferior frontal gyrus � 45 26 20 45 60 13.3

R inferior/middle frontal gyrus � 45 26 25 45/46 151 12.4

R fusiform gyrus � 41 � 71 � 15 19 134 14.3

R precentral gyrus � 30 � 19 60 6 48 9.4

Cerebellum 0 � 64 � 5 250 15.3

L thalamus 26 � 23 10 111 10.8

Retrieval: practice by load interaction

L cingulate gyrus 8 4 35 24 495 13.7

L supramarginal gyrus 45 � 53 50 40 109 10.0

L precentral gyrus 41 � 19 60 4 65 8.6

R supramarginal � 53 � 49 25 22 208 11.8

R superior occipital gyrus � 4 � 86 45 19 64 9.9

R insula � 49 11 5 228 11.3

Effect of practice

Encoding: practice effect only

L superior parietal lobule 26 � 71 45 7 38 8.2

L inferior occipital gyrus 53 � 75 � 5 19 56 7.3

L insula 45 11 � 5 42 8.5

R precentral gyrus � 34 � 8 30 6 13 8.7

R precentral gyrus � 23 � 19 50 6 11 10.5

R middle occipital gyrus � 45 � 71 5 37 16 8.7

Anterior thalamus 0 � 4 10 112 13.7

Encoding: practice effect and load effect

L superior parietal lobule 41 � 64 60 7 15 8.6

L amygdala 23 � 4 � 15 10 6.4

Encoding: practice effect and practice by load interaction

R insula � 30 11 � 20 47 11 7.0

R middle occipital gyrus � 34 � 86 15 19 56 10.3

L cerebellum 8 � 45 � 10 22 10.7

L, left; R, right; BA, Brodmann’s areas.

Local maxima are listed based on the type of effect (practice effect, load

effect, practice by load interaction) each showed in the functional ROI

analysis (see Materials and methods). Coordinates correspond to those from

the Montreal Neurological Institute (MNI) reference brain template.
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effect on mean RTs [F(1,8) = 0.218, P > 0.6] but did affect mean

error rates reliably [F(1,8) = 19.97, P < 0.01]. Finally, there was no

significant interaction between the effects of memory load and

amount of practice on mean RTs, [F(1,8) = 0.645, P > 0.6], but

these factors had significant interacting effects on mean error rates,

[F(1,8) = 5.44, P < 0.05]. A post hoc analysis showed that this

interaction was driven by the significant increase in mean error rate

from early to late for high memory load trials (7–12%) without a

corresponding change for the low load trials (4% errors early

compared with 3% errors late).

Imaging data—mapwise analyses

We identified regions showing a main effect of task and an

effect of practice (Fig. 3 and Table 1) during each task period

(encoding, delay, and retrieval). As shown in Fig. 3a, there was a

main effect of task across several frontal, temporal, parietal, and

extrastriate regions in each of the task periods. The effects of

practice within these regions are reported below in the ROI

analyses.

The practice effect analysis revealed a network of frontal,

parietal, temporal, and subcortical regions during encoding that

were more active during early scans as compared to late scans in

the session (Fig. 3b). No regions showed a significant practice

effects during the delay and retrieval periods. All brain regions

illustrated in Fig. 3b showed decreases in activation from early to

late in the session. Furthermore, activity in all of these regions was

significantly above baseline during the early scans. No region in

any task period showed significant activation increases from early

to late in the session.

Imaging data—functionally defined ROI analyses

To determine whether regions showing a main effect of task

were also influenced by practice and load, we carried out subse-

quent planned contrasts of the regions identified in the mapwise

analyses reported above (Fig. 3a). For the main effects ROIs,

during encoding, only three regions (in left middle temporal gyrus,

left postcentral gyrus, and left insula) did not also show effects of

practice. During delay and retrieval periods for the main effect

ROIs, no regions showed practice effects. Several of these regions

during delay and retrieval did, however, show practice by load

interactions, with high load trials showing a disproportionate

decrease from early to late compared with low load trials. The

local maxima for these regions and the type of effect found in each

region are listed in the Table 1.

We conducted further planned ANOVAs to examine the regions

identified by the mapwise analyses of practice (regions shown in

Fig. 3b, left and middle panels) to determine whether they were

also influenced by memory load. During encoding, we found load

effects and practice by load interactions in several parietal, occip-

ital, and subcortical regions. We also found regions showing a

practice effect only. Average signal in these regions decreased by

35% from early to late for high load trials and by 30% for low load

trials. The local maxima of each region are listed in the Table 1,

grouped by the type of effect (practice effect only, practice and load

effects, practice by load interaction) found in each region.

The interaction between load and practice on mean error rate in

the behavioral data raises the possibility that the changes in

activation from early to late were a result of decreased accuracy,

and not due to the effects of practice per se. To address this, we
carried out the analysis for correct trials only. In other words, the

regions we identified as showing practice effects for correct and

incorrect trials (Fig. 3b) were re-examined using data from correct
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trials only. We found no differences between data from correct

trials only and data including all trials.

To distinguish between fatigue and practice as explanations for

the activation decreases we observed, we carried out the following

additional analysis: participants were divided into ‘‘higher error

rate’’ and ‘‘lower error rate’’ groups based on a median split of

early versus late accuracy scores. The higher error rate group (N =

5) had an increase in error rate of 6.11% from early to late, and the

lower error rate group (N = 4) had an increase of only 2.78%.

If the decreases in activation we observed are due to increased

participant fatigue, then the higher error rate group, which likely

felt more fatigue, should show greater decreases in activation from

early to late. This should be especially true for encoding, which

showed the major effect of practice (see Fig. 3b). Therefore, we

examined the percent signal change (based on mean parameter

estimates) in the regions showing decreases during encoding (left

panel in Fig. 3b) for both higher error rate and lower error rate

participant groups.

Although the groups differed in the overall amount of activa-

tion, in contrast to what one would expect if fatigue was the cause

of the observed activation decreases, the decreases for these two

groups were nearly identical (0.041 and 0.039 for the higher and

lower error rate groups, respectively; [F(1,124) = 0.166, P > 0.68]

for the interaction).
Discussion

Our goal in the current experiment was to investigate whether

practice influences WM processes differentially during repetitive

performance of a face WM task. We investigated practice-related

activation changes from early to late in a scanning session across

low (1 or 2 faces) and high (3 or 4 faces) memory loads for

different task periods (encoding, delay, retrieval) of a face-working

memory (WM) task. We found effects of practice based on two

types of analyses across a group of participants: (1) we identified

regions in a mapwise analysis showing a main effect of task and

further examined these regions for practice (changes in activation

from early to late in the scanning session) and load (high load

versus low load) effects, (2) we identified regions in a mapwise

analysis showing a main effect of practice by comparing early

versus late runs in the session and further analyzed these regions

for load effects and practice by load interactions. In these analyses,

practice was shown to produce activation decreases. We found no

evidence for practice-related increases in activation or for shifts in

the locations of activated regions from early to late in the session.

Importantly, the neural effects of practice we identified were

independent of evidence of learning in the behavioral data. In other

words, neural activity changes over time as the task is performed

repetitively, but these changes are not dependent on behavioral

changes typically associated with skill learning. Thus, our results

challenge the idea that dynamic changes in activation are linked to

faster or more accurate performance as has been commonly

reported in experiments on cognitive and motor skill learning

(e. g. Berns et al., 1997; Karni et al., 1998; Poldrack et al.,

1998). Instead, the neural activity we observed changes over time,

but is independent of task improvement, suggesting that there are

important neural changes associated with learning that are not

captured in the behavioral data.

These findings have several important implications for exam-

ining dynamic changes in neural activity as a task is performed
repetitively. Variability of neural activity across the time course of

the scanning session (or over several sessions) is a common

methodological ‘‘problem’’ for imaging. Unless an fMRI experi-

ment is specifically designed to examine skill learning, most

studies are designed to capture a fixed neural profile associated

with a particular cognitive process. To accomplish this, signal

change values may be normalized to eliminate within-session

variance. While some of this variance is due to intrinsic scanner

fluctuations, some are due to important learning-related changes in

neural activity. Thus, the process of discounting this ‘‘noise’’ is

likely to also eliminate these experimentally relevant activation

changes. Although several fMRI experiments have examined early

and late phases of learning (e.g., Muller et al., 2002; Sakai et al.,

1998; Toni et al., 2001; Tracy et al., 2001), the present study

employs a working memory task rather than a traditional motor- or

association-learning paradigm, and does not involve improved

performance associated with skill acquisition.

The influence of working memory load on task-related activity

has been reported elsewhere (Druzgal and D’Esposito, 2003). That

study reported that activation increased parametrically with mem-

ory load in the prefrontal cortex (PFC) and the fusiform face area

(FFA), but not in the fusiform object area (FOA), during encoding

and delay periods. Those results suggest that the PFC and FFA are

sensitive to increasing demand for WM resources. In the present

study, we focus specifically on the influence of practice and the

interaction between practice and memory load. To this end, the

manipulation of load was used to determine whether activation is

changed differentially with practice as WM demands increase.

Practice effects

Of all the task-related regions (Fig. 3a) we identified, we found

regions showing additional effects of practice during the encoding

period only. Interestingly, we found only three encoding-related

regions that did not show a practice effect, indicating that these

regions are involved in encoding processes that are not influenced

by task repetition. These regions are in left middle temporal gyrus,

left postcentral gyrus, and left insula. Because activity in these

regions does not change with practice, these regions are likely

involved in encoding processes that are not sensitive to stimulus

novelty or to changes in encoding efficiency. Because this practice-

related activation is primarily left-lateralized, one candidate pro-

cess is subvocal verbalization (e.g., providing names or labeling) of

faces during encoding.

The mapwise contrast of early versus late session changes in

activation also indicates that the influence of practice is seen

primarily during encoding. This finding is consistent with theories

of memory that hypothesize that encoding is an active process

requiring attention, whereas retrieval processes (e.g., motor re-

sponse) are more automatic (Naveh-Benjamin et al., 2000). There

is also evidence from divided attention studies that encoding is

more strongly affected by dual-task interference than retrieval

(Craik et al., 2000). Because of its higher demands on attention,

the active encoding process may more readily benefit from

practice. This benefit may reflect improvements in general encod-

ing processes rather than in processes specific to particular stimuli.

That is, practice-related decreases are unlikely due to greater

familiarity with the memoranda given that similar effects have

been observed previously with highly familiar letter stimuli

(Jansma et al., 2001) and with extremely simple, three-dot stimuli

with trial-unique configurations (Garavan et al., 2000).
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Regions showing a practice effect without a corresponding

main effect of task may reflect mediation of cognitive processes

necessary for successful task performance during the initial phases

of task learning only. All of these regions showed significant

activity above baseline during the early period of the scanning

session, indicating that these regions are related to task perfor-

mance. That these regions do not show significant task-related

activity across the session highlights a benefit of our practice-

related analysis. With this approach, we identified additional task-

related brain regions that traditional analyses fail to detect.

We observed activation decreases in several regions normally

associated with motor processing. Murray et al. (2000) have

proposed that a basal–ganglia–prefrontal network, including out-

puts to the thalamus, is critically involved in the formation of

arbitrary visuomotor associations and abstract rules. Thus, the

decreases we observed in the anterior thalamus, putamen, and

right anterior frontal gyrus may result from subjects’ decreasing

need to focus on task rules as the task became well practiced.

It is possible that repetition priming effects contributed to the

decreases with practice we found in visual-processing regions, as

have been reported previously (Martin and van Turennout, 2002).

It is unlikely, however, that repetition priming can fully explain the

effects we found. First, if the practice-related decreases were a

result of repeated viewing of the same stimuli, as van Turennout et

al. (2000) found for objects during passive viewing and Henson et

al. (2002) found for faces on an implicit task, we would expect to

see decreases during the retrieval period as well as during encod-

ing, particularly in primary visual regions. Second, because the

activation decreases occurred throughout the brain, it is likely that

multiple systems are affected by practice, not just low-level

perceptual processing systems.

It is also possible that the null effects of practice during the

delay and retrieval periods may reflect a lack of statistical power

due to the small sample size and division of the functional data into

early and late phases. However, the practice effects we observed

during encoding (i.e., activation decreases) suggest that the statis-

tical power and sample size are adequate for detecting of effects of

interest. While small (i.e., undetected) practice effects may have

been present during the delay and retrieval periods, the encoding

period clearly shows the greatest effects.

The changes in activation we observed in the absence of

behavioral evidence of learning suggests that, in agreement with

some motor learning studies (Shadmehr and Holcomb, 1997;

Staines et al., 2002), neural changes with task experience may

occur even without faster task performance. Although RT did not

change across the session, error rates did increase from early to late

on high load trials. This raises the possibility that the practice-

related changes we found were due to participant fatigue or

decreased effort late in the session.

However, the analysis of the ‘‘higher error rate’’ and ‘‘lower

error rate’’ groups (see Results) showed no difference between

groups in percent signal change from early to late. Rather than

implicating fatigue as the major cause of the observed activation

decreases, these findings are consistent with our interpretation that

the decreases we observed during encoding reflect changes in

efficiency with task practice.

Several additional findings are also inconsistent with the

observed decreases being related to fatigue rather than practice.

First, participants’ reaction times were faster from early to late in

the session (by an average of 5 ms for low load trials and 23 ms for

high load trials). While these decreases were not significant, this
trend would not be expected if participants were experiencing

greater fatigue and distraction during the late trials. Second,

decreases in activation were observed for both low load and high

load trials, while increased error rate occurred only during high

load trials. Third, and most importantly, the main effect of task

analysis showed that the extent of overall activity was greater

during retrieval (2087 active voxels) than during encoding (626

active voxels). A generalized fatigue or attention effect would be

expected to produce decreases in activity from early to late in both

task periods, although we report decreases only during encoding.

Furthermore, while other fMRI studies have reported decreases

in activation with practice on WM tasks (Garavan et al., 2000;

Jansma et al., 2001; Milham et al., 2003), these studies did not

isolate separate components of WM and therefore did not contain a

‘‘built-in’’ control for general attention effects as in the current

experiment. Finally, these experiments showed improvements in

performance during the scanning session that accompanied activa-

tion decreases, suggesting that fatigue and attention effects cannot

explain these decreases. Thus, the most relevant existing data,

which are consistent with the data we present here, do not support

the fatigue explanation.

Practice by load interactions

We conducted a further analysis in the functional ROIs to

examine practice-related changes across both high- and low-

memory loads to investigate the nature of the effect of practice

on specific WM processes. Regions showing effects of practice but

not load may be involved in general learning processes: ones not

specific to WM. Other regions, affected both by practice and

memory load, may be more important for implementing WM-

specific encoding strategies, such as chunking, which may become

optimized once the task has been well learned. Recent WM studies

suggest that greater activation for increased memory load is due to

additional recruitment of cognitive resources required for success-

ful maintenance in high WM load conditions (D’Esposito et al.,

2000).

The pattern of interaction between practice and memory load on

activity within a particular brain region may indicate the nature of

the WM processes instantiated there. For example, an interaction in

which the load effect disappears with practice may indicate a

process that is required when the task is novel but not when it is

performed with expertise. Conversely, additive effects between

practice and load may indicate a process that becomes more

efficient with practice, but is required for the successful perfor-

mance of the task.

In our practice effect ROIs identified by the mapwise analyses,

several regions (right insula, right middle occipital gyrus, and left

cerebellum) showed practice by load interactions during encoding,

with high load trials showing greater decreases from early to late

than low load trials. In the main effect of task ROIs, we found

practice by load interactions in several other regions. While we

observed these interactions in all three task periods, only the

interaction regions during encoding also showed effects of practice.

These findings suggest that regions specialized for increasing

efficiency with practice may also be influenced by load. Further-

more, it appears that practice interacts with load in a complex way

that may not be apparent when examining the early versus late

signal change alone.

Overall, these findings suggest that load effects may attenuate

with practice. This attenuation of load effects is striking because it
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indicates that the relationship between information being encoded

and corresponding brain activation may change flexibly with task

experience. Clearly, this result challenges any simple mapping

between brain activation levels and information processing load. In

revealing that this mapping is likely to be contingent on the

participant’s familiarity with the task, it suggests that objective

differences in task demands may be minimized by the efficiency of

the encoding mechanisms.

Learning and neural efficiency

The finding that practice-related decreases occurred predomi-

nantly during the encoding period, and not during the delay and

retrieval periods, provides strong evidence that practice influences

WM processes differentially. There are several theories of encod-

ing efficiency that offer insight into how subjects may have

generated encoding strategies that were implemented more suc-

cessfully with practice. For example, chunking is a process that

involves condensing information into discrete units to be held in

WM. Greater knowledge and expertise of a particular domain

allows more chunking of information related to that domain to

occur (Gobet et al., 2001; Miller, 1956). In this experiment, faces

can be considered visual stimuli for which subjects have special

expertise (Gauthier et al., 1999). Subjects may use face expertise to

organize individual facial features into chunks more efficiently as

the task becomes familiar.

Related to the concept of chunking is Ericsson and Kintsch’s

(1995) model of long-term working memory, in which subjects

develop skill in a particular domain by applying strategies for

efficient encoding in long-term memory. These strategies become

refined with repeated exposure to the task and stimuli. Thus, in this

experiment, early on in the session, subjects may carry out

inefficient encoding procedures of individual features of faces

early on in the session. With task practice, however, subjects

may learn to use expert knowledge about faces to develop

strategies for encoding relevant features that will allow them to

successfully discriminate between target and distractor faces.

Finally, Glassman (1999) has applied the concept of proce-

dural knowledge to these models and has suggested that proce-

dural memory (based on task knowledge and skill) serves as a

focusing mechanism that serves as a priming mechanism for

efficient encoding and for facilitating chunking. He proposes that

brain regions involved in this focusing mechanism must be highly

multimodal to incorporate complex timing, perceptual, and mne-

monic systems. Thus, the regions we observed showing encod-

ing-related decreases may be important early in the session for

focusing knowledge about facial features, but less important late

in the session when encoding strategies have already been

established.

We found no brain regions showing activation increases with

practice, and no new regions appearing late that were not active

early in the session. This suggests that the change with practice was

one of increased neural efficiency for processes (e.g., chunking)

that remained constant across the task, and not a shift in strategy

with increased practice. The present results of practice-induced

activation decreases complement two previous investigations of

WM practice effects (Garavan et al., 2000; Jansma et al., 2001),

both of which observed activation decreases with practice. Our

interpretation is also consistent with results from a study that found

practice-related decreases in activity as participants learned to filter

out task-irrelevant responses on a version of the Stroop task.
Specifically, Milham et al. (2003) found different profiles of

practice-related decreases in dorsolateral PFC and anterior cingu-

late corresponding to decreasing need for attentional control.

In other neuroimaging studies investigating the relationship

between neural efficiency and activation, results have been mixed.

Gray et al. (2003) reported a positive correlation between left

lateral prefrontal activation and intelligence scores (Gray et al.,

2003), suggesting that more prefrontal activity was associated with

more efficient processing. Other studies have found that higher

intelligence was associated with greater activation decreases with

learning on a spatiomotor task (Haier et al., 1992b), and with less

spatial dispersion of the source of activity (Jausovec and Jausovec,

2003). Other studies have reported correlations between better task

performance and low activation levels (Haier et al., 1992a; Rypma

et al., 2002), which is consistent with our findings that activation

decreases as processing becomes more efficient.

The absence of behavioral evidence of learning raises the

question of whether neural processing did in fact become more

efficient. It should be noted that response time measurements on

trials such as these provide only indirect and uncertain informa-

tion about the efficiency of the preceding encoding processes.

However, the neural efficiency hypothesis is supported by our

findings with respect to memory load. While the behavioral data

did not show evidence of improved performance, it did show an

effect of load, with longer reaction times on high load trials than

on low load trials. Correspondingly, brain activity was greater for

high than low load trials in several regions showing practice

effects and practice by load interactions. Consequently, that the

more demanding task condition (high load) produced greater

activation levels suggests that the ease of processing is inversely

related to activation levels. The observation that the load effect

dissipated with practice (i.e., activation on high and low load

trials became indistinguishable with practice) suggests that pro-

cessing demands did decrease and that encoding processes

became more efficient.

The suggestion that neural activation may change from early to

late in a scanning session, even in the absence of behavioral

evidence of learning, has implications for data analysis in any

functional neuroimaging study involving repetition of a task or

specific stimuli. The effects of an hour or two of practice with a

task or specific stimuli typically are not considered in most

experiments. Trials at the beginning of the scanning session, when

the task and stimuli are unfamiliar, are averaged together with trials

at the end of the session, when the task and stimuli are performed

with greater ease and flexibility. By revealing dramatic changes

from early to late in practice, this experiment shows that practice-

related variance may be of great interest even when the task does

not require learning skills or associations. We suggest that the

neural profile of most tasks is not stable but changes as a function

of time and participant experience over the course of scanning.

Future imaging experiments may benefit from viewing neural

activation as a dynamic, rather than static, phenomenon. One

way to address this issue is to modify standard fMRI data analysis

procedures that eliminate within-session signal variance in a way

that accounts for changes with time and task expertise.

This study suggests that task practice influences the amount or

pattern of neural activation during just one scanning session, even

when this practice is not evident in the behavioral data. Thus,

these findings argue for a neural basis of learning that is not

dependent on behavioral performance, and challenge the idea that

cognitive processes can be mapped onto brain regions in a fixed
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and stable way. Our data suggest, instead, that neural activation

corresponding to repetitive task performance is both spatially and

temporally dynamic.
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